Recognition of deaminated bases by archaeal family-B DNA polymerases.
نویسنده
چکیده
Archaeal family-B DNA polymerases interact specifically with uracil and hypoxanthine, stalling replication on encountering these deaminated bases in DNA template strands. The present review describes X-ray structural data which elucidate the mechanism of read-ahead recognition of uracil and suggests how this is coupled to cessation of polymerization. The possible role of read-ahead recognition of uracil/hypoxanthine in DNA repair is discussed, as is the observation that the feature appears to be limited to replicative polymerases of the archaeal domain.
منابع مشابه
Processing of DNA lesions by archaeal DNA polymerases from Sulfolobus solfataricus.
Spontaneous damage to DNA as a result of deamination, oxidation and depurination is greatly accelerated at high temperatures. Hyperthermophilic microorganisms constantly exposed to temperatures exceeding 80 degrees C are endowed with powerful DNA repair mechanisms to maintain genome stability. Of particular interest is the processing of DNA lesions during replication, which can result in fixed ...
متن کاملArchaeal DNA Polymerase-B as a DNA Template Guardian: Links between Polymerases and Base/Alternative Excision Repair Enzymes in Handling the Deaminated Bases Uracil and Hypoxanthine
In Archaea repair of uracil and hypoxanthine, which arise by deamination of cytosine and adenine, respectively, is initiated by three enzymes: Uracil-DNA-glycosylase (UDG, which recognises uracil); Endonuclease V (EndoV, which recognises hypoxanthine); and Endonuclease Q (EndoQ), (which recognises both uracil and hypoxanthine). Two archaeal DNA polymerases, Pol-B and Pol-D, are inhibited by dea...
متن کاملThe 3′–5′ proofreading exonuclease of archaeal family-B DNA polymerase hinders the copying of template strand deaminated bases
Archaeal family B polymerases bind tightly to the deaminated bases uracil and hypoxanthine in single-stranded DNA, stalling replication on encountering these pro-mutagenic deoxynucleosides four steps ahead of the primer-template junction. When uracil is specifically bound, the polymerase-DNA complex exists in the editing rather than the polymerization conformation, despite the duplex region of ...
متن کاملUnwinding of primer-templates by archaeal family-B DNA polymerases in response to template-strand uracil
Archaeal family-B DNA polymerases bind tightly to deaminated bases and stall replication on encountering uracil in template strands, four bases ahead of the primer-template junction. Should the polymerase progress further towards the uracil, for example, to position uracil only two bases in front of the junction, 3'-5' proof-reading exonuclease activity becomes stimulated, trimming the primer a...
متن کاملUnique substrate spectrum and PCR application of Nanoarchaeum equitans family B DNA polymerase.
The known archaeal family B DNA polymerases are unable to participate in the PCR in the presence of uracil. Here, we report on a novel archaeal family B DNA polymerase from Nanoarchaeum equitans that can successfully utilize deaminated bases such as uracil and hypoxanthine and on its application to PCR. N. equitans family B DNA polymerase (Neq DNA polymerase) produced lambda DNA fragments up to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical Society transactions
دوره 37 Pt 1 شماره
صفحات -
تاریخ انتشار 2009